
Manuscript for Publication at the 19th International Modal Analysis Conference (IMAC).
February 5-8, 2001, Kissimmee, Florida.

Approved for public release on October 17, 2000.                                                      LA-UR-00-4946 — Unclassified.
© Copyright 2000-2001 by F.M. Hemez, S.W. Doebling and Los Alamos National Laboratory.

DESIGN OF COMPUTER EXPERIMENTS
FOR IMPROVING AN IMPACT TEST SIMULATION

François M. Hemez,1 Amanda C. Wilson2 and Scott W. Doebling3

Los Alamos National Laboratory
Engineering Sciences & Applications Division

Engineering Analysis Group (ESA-EA)
P.O. Box 1663, M/S P946, Los Alamos, New Mexico 87545

                                                
1 Technical Staff Member, hemez@lanl.gov, 505-665-7955 (Phone), 505-665-2137 (Fax), Member AIAA, SEM.
2 Undergraduate student, Texas Tech University at Lubbock, Texas, AWilson42@yahoo.com.
3 Technical Staff Member, doebling@lanl.gov, 505-667-6950 (Phone), 505-665-2137 (Fax), Member SEM.

ABSTRACT

This paper gives an overall presentation of a research
project pursued at Los Alamos National Laboratory for the
validation of numerical simulations for engineering
structural dynamics. An impact experiment used to
develop and test the model validation methodology is
presented. Design of experiments techniques are
implemented to perform parametric studies using the
numerical model and improve its predictive quality. The
analysis relies on correlation study where input
parameters responsible for explaining the total variability
of the numerical experiment are identified, then, updated.
The quality of the model is assessed via its ability to
reproduce the same statistics as those inferred from the
experiment data sets. Throughout the paper, a particular
emphasis is placed on presenting the contribution to this
project of Amanda Wilson, undergraduate student at
Texas Tech University, and research assistant at Los
Alamos in the summer of 2000 in conjunction with the
Los Alamos Dynamics Summer School. The model
validation project is described in greater details in the
companion paper [1].

NOMENCLATURE

The recommended “Standard Notation for Modal Testing
& Analysis” is used throughout this paper [2].

1. INTRODUCTION

Current model updating and refinement methods in
structural dynamics are generally based on linear
assumptions and do not provide quantifiable confidence
intervals for model components. Updating techniques
commonly attempt to map the experimental information
to the model space. This results in a confounding of
system information through the data expansion or
condensation. There is normally little evaluation from
either a design of experiments or statistical approach to
quantify the model updating mechanism for a range of
applications and confidence intervals.

This research aims at exploring pattern recognition and
Design of Experiment (DoE) techniques to improve the
predictive quality of numerical models via model updating
and refinement. Here, the emphasis is placed on
presenting the contribution to this project of Amanda
Wilson, undergraduate student at Texas Tech University,
Lubbock, Texas, and research assistant at Los Alamos
National Laboratory (LANL) in the summer of 2000 in
conjunction with the Los Alamos Dynamics Summer
School. A complete description of the model validation
project can be obtained from paper [1]. After a brief
description of the impact test in section 2, the test data
variability is discussed (section 3) and the features or
output parameters of interest are presented (section 4). A
description of the numerical model follows in section 5.
Sensitivity studies and statistical effect analyses are
contrasted in sections 6 and 7, respectively. The
generation of statistical meta-models from the computer
experiment’s output and the optimization of fast-running
models are presented briefly in section 8. Finally, key
enabling software aspects are discussed in section 9.

2. IMPACT EXPERIMENT

In this section, a brief description of the impact
experiment performed in the summer of 1999 at LANL is
provided. The application is a high-frequency shock that
features a component characterized by a nonlinear,
visco-elastic material behavior. Details can be obtained
from Reference [3]. Issues such as the variability of the
experiment, the model-based sensitivity study, the
statistical parameter effect analysis and the optimization
of the numerical model are discussed in the following
sections.

2.1 Experiment Setup

The impact test consists of dropping from various heights
a carriage (drop table) to which are attached a layer of
hyper-elastic material and a steel cylinder. Upon impact
on a concrete floor, a shock wave is generated that
propagates to the hyper-elastic layer. It compresses the
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steel cylinder to cause elastic and plastic strains during a
few milli-seconds. Figure 1 illustrates the
cylinder/pad/carriage assembly. A photograph of the test
setup is shown in Figure 2.

Figure 1. LANL impact test assembly.

Figure 2. LANL impact test setup.

It can be observed from Figure 2 that four acceleration
measurements are collected during each test. The input
acceleration is measured on the top surface of the
carriage and three output accelerations are measured on
top of the steel cylinder. Another important feature of the
experiment is the double bolt used to tighten the cylinder
and hyper-foam pad to the carriage (see Figure 2). This
assembly technique generates a pre-load that depends
on the amount of torque applied. As explained in the
following, the pre-load value turns out to be a critical
parameter of the numerical simulation. Unfortunately, it
was not possible to measure the amount of torque
applied during the experiments, therefore, defining an
important source of uncertainty and variability.

2.2 Purpose of the Experiment

The primary purpose of this test is to infer from the
measured input/output acceleration data the “best
possible” material model. Figure 3 pictures the result of
an optimization where the material model is optimized
until the acceleration response predicted by the
numerical model “matches” the measured data.

Figure 3. Initial (*) and optimized (o) strain-stress
curves of the hyper-foam pad.

The difficulty of recasting this inverse problem as a
conventional finite element model updating problem
comes from the following facts:

1) Nonlinearity such as the hyper-foam material
and contact must be handled by defining
appropriate “features” from the system’s
response;

2) Parameter variability and uncertainty about the
experiment must be identified and propagated
throughout the forward calculations;

3) Prior to performing any optimization of the
numerical model, the expensive computer
simulations must be replaced by equivalent, fast
running “meta-models” that capture all dominant
parameter effects yet remain computationally
simple.

Steel Cylinder

Hyper-foam Pad

Tightening Bolt

Carriage
(Impact Table)
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3. TEST DATA VARIABILITY

Since we were concerned with environmental variability
and we suspected that several sources of uncertainty
would contaminate the experiment, the impact tests were
repeated several times to collect multiple data sets from
which the repeatability could be assessed. Acceleration
signals measured during these tests are depicted in
Figures 4-5. The carriage is dropped from an initial height
of 13 inches (0.33 meters) and the hyper-foam pad used
in this configuration is 0.25 inch thick (6.3 mm). A blow-
up of the peak acceleration signals collected during ten
“identical” tests at output sensor #1 is shown in Figure 5.
This sensor is one of the three located on top of the steel
cylinder.

Figure 4. Accelerations measured during a
low velocity impact on a thin layer of material.

Figure 5. Variability of the acceleration response.

Overall, it can be seen that peak values vary by 4.4%
while the corresponding times of arrival vary by 0.6%
only. (These percentages are defined as the ratios of
standard deviations to mean values.) Although small,
ignoring this variability of the peak response may result
into predictions erroneous by several hundred g’s, which
may yield catastrophic consequences.

In addition to repeating the “same” test several times,
various configurations were tested. Table 1 summarizes
the test matrix where, essentially, the drop height and the
foam thickness were varied. The reason why less data
sets are available at high impact velocity is because
these tests proved to be destructive to the hyper-foam
material and could not be repeated to study the variability
of the acceleration response.

Table 1. Data collected with the impact testbed.
Number of
Data Sets
Collected

Low Velocity
Impact

(13in./0.3m)

High Velocity
Impact

(155in./4.0m)
Thin Layer
(0.25in./6.3mm) 10 Tests 5 Tests
Thick Layer
(0.50in./12.6mm) 10 Tests 5 Tests

More important than developing a numerical model that
reproduces the measured response, it must be assured
that the variability featured in Figures 4-5 is captured.
This matters because a numerical simulation is often
developed for studying the system’s reliability in which
case it must be able to represent the total variability of the
experiment and responses located in the tails of the
statistical distributions rather than mean responses.

4. CHARACTERIZATION OF THE RESPONSE

It can be observed from Figures 4-5 that over a thousand
g’s are measured on top of the impact cylinder, which
yields large deformations in the hyper-foam layer. The
time scale also indicates that the associated strain rates
are important. Clearly, modal superposition techniques
would fail modeling this system because of the following
reasons:

1) Contact can not be represented efficiently from
linear mode shapes;

2) Nonlinear hyper-foam models, that possibly
include visco-elasticity, are needed to represent
the foam’s hardening behavior at high strain
rates;

3) Very refined meshes would be required to
capture the frequency content well over 10,000
Hertz.

These remarks introduce the general problem of “feature
extraction.” In other words, which quantities (features)
can be extracted from the data sets to characterize the
response of this nonlinear system? Several features have
been proposed in the literature, a recent review of which
can be found in Reference [4]. Among them, we cite the
principal component (Karhunen-Loeve) decomposition;
the coefficients or control charts obtained from fitting AR,
ARX or ARMA models to time-domain data; the shock
response spectrum; the spectral density function; the
joint probability density function of the output feature; and
higher-order statistical moments.
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For analyzing the drop test experiment, we essentially
focused on the peak acceleration and time of arrival. The
reason is because these are the quantities of interest to
the analyst. Actually, the impulse is so short in time that
matching these two features is sufficient to capture the
response’s energy content. Nevertheless, feature
extraction is one of the most critical aspects of model
validation for nonlinear systems.

5. NUMERICAL MODELING AND ANALYSIS

In an effort to match the test data, several finite element
models were developed by varying, among other things,
the angles of impact, the amount of bolt pre-load, the
material’s constitutive law and the amount of friction at
the interface between various components. Introducing
two independent angles of impact was important for
capturing the response’s asymmetry. (A small free-play
in the alignment of the central collar had to be introduced
in the numerical model to simulate the same time-lags of
peak accelerations as the ones observed from test data.)
Table 2 summarizes the input parameters that define the
numerical simulation. They consist of physical,
deterministic quantities such as the material model;
physical, stochastic quantities (such as the bolt pre-load);
and numerical coefficients (such as the bulk viscosity
that controls the rate of deformation of the volume
elements used in the discretization).

Table 2. Input parameters of the model.
Identifier Definition Unit

1 or A Angle of Impact 1 degree
2 or B Angle of Impact 2 degree
3 or C Bolt Pre-load psi (N/m2)
4 or D Material Coefficient 1 N/A
5 or E Material Coefficient 2 N/A
6 or F Input Scaling N/A
7 or G Friction Coefficient N/A
8 or H Bulk Viscosity Coefficient N/A

Figure 6 illustrates the finite element model used for
numerical simulation. The analysis program used for
these calculations is HKS/Abaqus®-Explicit, a general-
purpose package for finite element modeling of nonlinear
structural dynamics [5]. It features an explicit time
integration algorithm, which is convenient when dealing
with nonlinear material behavior, potential sources of
impact or contact, and high frequency excitations. The
model is composed of 963 nodes, 544 C3D8R volume
elements and two contact pairs located at the
cylinder/pad interface and the pad/carriage interface. This
modeling yields a total of 2,889 degrees of freedom
composed of structural translations in three directions
and Lagrange multipliers defined for handling the contact
constraints. A typical analysis running on a single
processor of the ASCI platform is executed in
approximately 10 minutes of CPU time. (The computing
module of the ASCI, Accelerated Strategic Computing
Initiative, platform at LANL is a cluster of 64 Silicon
Graphics Origin2000 nodes, each composed of 128
R10010 chips.)

Figure 6. 3D model of the LANL drop test.

Figure 7 illustrates the total variability observed when the
eight variables defined in Table 2 are varied. To analyze
the variability, a fully populated factorial design of
computer experiments is simulated where each variable
is set either to its lower bound or to its upper bound and
all possible combinations of input variables are defined.
Therefore, a total of 28 = 256 numerical simulations must
be analyzed.

Figure 7. Full factorial design of computer
experiments (8 variables, 2 levels).

It is clear from Figures 4 and 7 that the variability of the
numerical simulation is much greater than the variability
observed during testing. As a result, the first step of test-
analysis correlation consists of designing a “screening”
experiment that must achieve the following two
objectives. First, the range of variation of each input
parameter must be narrowed down in a manner that
stays consistent with test results. Second, the main
effects of the experiment must be identified in a statistical
manner as opposed to performing a local sensitivity
study.

It is emphasized that multi-level full factorial analyses
would typically not be accessible for complex engineering
applications due to the lack of time or computational
power. An example is the ASCI experiment performed at
LANL for a complex threaded joint subjected to explosive
loading [6]. To predict with adequate accuracy the
attenuation of the shock wave through various joints and



Approved for public release on October 17, 2000.                                                      LA-UR-00-4946 — Unclassified.
© Copyright 2000-2001 by F.M. Hemez, S.W. Doebling and Los Alamos National Laboratory.

5

components of the structure, a detailed finite element
model that counts over 6 million degrees of freedom had
to be developed and analyzed. The search space for this
simulation is composed of 11 input parameters that
describe the pre-load and friction properties of the
assembly. Obviously, achieving a full description of such
input space is impossible. For example, a full factorial
DoE featuring three levels only would require a total of 311

= 177,147 simulations. For this particular application, they
would be executed in roughly 40.4 years assuming that
504 processors of today’s most powerful ASCI platform
are available! This is the reason why other DoE’s are
investigated in the following sections. The Taguchi,
orthogonal array designs used below provide essentially
the same information at a fraction of the computational
requirement [7].

6. SENSITIVITY STUDY

The tool commonly used for identifying the dominant
parameter effects in structural dynamics is sensitivity
study. We wish to identify the input parameters to which
the output features (peak acceleration and time of arrival)
seem to be the most sensitive. Because of the strong
sources of nonlinearity involved, centered finite
differences are implemented to estimate these
sensitivities with respect to each of the eight input
parameters. We emphasize that we are fully aware of the
adverse mathematical implications of approximating
discontinuous functions with finite differences but we
choose to proceed anyway to illustrate the drawbacks of
this popular engineering practice.

A sample of the results obtained is presented in Figures 8
and 9. Figure 8 shows the sensitivity of the peak
acceleration when the input parameters are set to their
upper bounds. It illustrates that the most sensitive
parameter is the 5th one, the second material constant.
However, a different parameter is identified as being the
most sensitive one when the study is performed at the
input parameter’s lower bounds (Figure 9). Since the
“true” combination of input parameters is unknown prior
to test-analysis correlation, drawing a conclusion
regarding which one of these parameters should be kept
in the analysis is not possible.

This example demonstrates that performing a sensitivity
study may not provide the analyst with any useful
information, especially when the dynamics of the
response is significantly nonlinear. The main reason is
because sensitivity provides information local in nature
(sensitivity coefficients are computed at a design point, in
a particular direction of the search space) as opposed to
a global assessment of the effect of each input
parameter over the entire design space.

Figure 8. Sensitivity of the peak acceleration
at the parameter’s upper bounds.

Figure 9. Sensitivity of the peak acceleration
at the parameter’s lower bounds.

Another drawback of conventional sensitivity study is the
computational cost. In this case where finite differences
are involved, each sensitivity coefficient requires one
analysis at the design point pi followed with two analyses
for each input parameter at points (pi+dpi) and (pi-dpi)
where dpi denotes a “small” increment. Therefore, a total
of (1 + 2x8) = 17 computer runs are required to generate
all sensitivity coefficients at a single point of the design
space. Estimating them during parameter optimization or
over the entire design space yields prohibitive
computational requirements even in the case of such a
small model.

7. STATISTICAL EFFECT ANALYSIS

Instead of relying on local information, it appears more
efficient to perform a statistical effect analysis that
quantifies the global influence and interaction between
input parameters over the entire design space. Here, we
wish to identify the subset of input parameters
responsible for producing the total variability observed in
Figure 7. In doing so in the context of inverse problem
solving, the focus is shifted from iteratively providing an
optimization algorithm with accurate sensitivity data to
designing upfront a computer experiment that provides
the information necessary to the effect analysis.
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First, a design of computer experiments is selected.
Issues are the number of simulations to execute
(depending on the time and computer resource available)
and the avoidance of aliasing that may bias the
subsequent statistical analysis. Alias in statistical
modeling is caused by a too sparse sampling of the input
space and it results in the contamination of the main
effects investigated by higher-order effects. For example,
a DOE designed to study linear interactions between
input parameters and output features may yield
erroneous conclusions because predictions are aliased
by quadratic interactions. Design matrices used are
typically full factorial designs, partial factorial designs,
Taguchi orthogonal arrays or sampling techniques
among which we cite the Latin Hypercube sampling and
the orthogonal array sampling [7-8]. After defining a
computer experiment, the finite element package is run at
the corresponding combinations of input parameters and
results are gathered for feature extraction. Then,
statistical tests are implemented to assess the global
contribution of each input parameter to the total variability
observed from the computer simulations. A popular
example is the R-square (R2) statistics that estimates
Pierson’s correlation ratio. It is defined as the ratio
between the variance that can be attributed to a given
effect and the total variance of the data set.
Mathematically, the R2 is a normalized quantity (between
0 and 1) calculated as
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where yj denotes the output data feature of interest.
Clearly, values close to one indicate a variable or an
effect (pi

2, pi*pj, pi*pj*pk, etc.) that contributes in a
significant manner to the total variability of the responses.
Details about the procedure can be obtained from
Reference [8].

Figure 10. R2 analysis for main, linear effects.

Figure 10 represents the R2 statistics obtained for each
one of the eight input parameters when analyzing the

peak acceleration response at output sensors #1-3.
Variables #1-3 (the two angles of impact and the bolt pre-
load) are identified as being the most critical for predicting
the total variability observed in Figure 7. Similarly, the
analysis of coupled effects pi*pj can be carried out to
identify the most influential cross-terms provided that
enough data are available to minimize the effects of
aliasing. The results of a cross-term analysis are
presented in Figure 11. Again, coupling terms that feature
an interaction with variable #3 (the bolt pre-load) are
shown to be dominant.

Figure 11. R2 analysis for quadratic interactions.

The main conclusion that can be drawn from the
statistical effect analysis is that the material model does
not explain the variability nearly as much as the bolt pre-
load does. It means that the original material model
obtained by performing a static compression test on a
sample of material is a good starting point for the
optimization. Indeed, it can be seen from Figure 3 that the
final, optimized model is not significantly different from
the original model.
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8. NUMERICAL OPTIMIZATION

The final step is to infer from test data the optimal values
of the input parameters. We briefly introduce the
procedure followed when the investigation is restricted to
four parameters: the two angles of impact, the bolt pre-
load and the input scaling. Other models are shown in
Reference [1] that provide similar or better results.

8.1 Fitting Meta-models to the Simulation Data

Since a smaller number of input parameters are retained
(4 out of 8), a localized computer experiment can be
designed to provide a better resolution in the area of
interest. The area of interest is here defined as the region
in the multi-dimensional search space where features
extracted from the test data sets are located. A full
factorial DOE matrix with 4 levels for each input
parameter is defined which results into the analysis of 44

= 256 designs. Then, fast running models are fit to the
simulation data following the procedure detailed in
Reference [1]. Equation (2) illustrates a possible model
for the peak acceleration response at sensor #2:
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Instead of fitting multi-dimensional polynomials, statistical
models are preferred because in addition to yielding
computationally efficient meta-models, they also provide
confidence intervals that can be used for assessing the
model’s goodness-of-fit. For example, each coefficient of
the polynomial shown in equation (2) is associated with a
statistics that shows how dominant the corresponding
effect is. Statistical significance in this case refers to
those parameters whose effect on the response feature
variability is greater than would be explained by a normal
distribution of noise. Table 3 shows the +/-95%
confidence interval bounds obtained for each coefficient
of model (2). Also shown are the values of the F-
statistics, a test that measures the degree of significance
of each contribution kept in the model [9]. Typically, a
value of the F-statistics smaller than 5% indicates that
the corresponding model term is significant. It can be
concluded from Table 3 that the statistical model (2)
exhibits a remarkable fit to the simulation data defined by
our 4-variable, 4-level full factorial DOE.

Table 3. Statistical significance of model (2).
Effect
Kept

-95% CI
Bound

Value
Used

+95% CI
Bound

F-test
Value

1 -1,597.6 -1,538.2 -1,478.8 0.01%

a1 11.1 43.6 76.1 0.43%

a2 208.5 288.4 368.3 0.01%

Pbolt 2.3 2.4 2.6 0.01%

sI 2,351.0 2,552.8 2,754.6 0.01%

a1
2 -436.5 -391.3 -346.1 0.01%

a2
2 -352.3 -307.1 -261.9 0.01%

Pbolt
2 -0.0008 -0.0006 -0.0004 0.01%

a1*a2 629.5 665.7 701.9 0.01%

a2*Pbolt -0.6 -0.5 -0.4 0.01%

a2*sI -633.4 -452.4 -271.5 0.01%

Pbolt*sI 1.1 1.5 1.9 0.01%

It is emphasized that equation (2) defines a family of
models that could be re-sampled to account for omitted
sources of uncertainty (round-off errors, environmental
variability, etc.). Table 3 shows in column 3 the values
used for defining our model in equation (2). However, any
other model synthesized from coefficient values
randomly selected within their [-95%; +95%] confidence
intervals would also be consistent with the data sets
provided by the DOE. Re-sampling this model would
essentially mean that decisions are based on properties
of ensembles rather than a single model. This can be
exploited advantageously to include omitted sources of
variability or to identify areas of the design space that
require further refinement. Optimizing the statistical
significance of each individual effect contribution may be
as important than maximizing the overall goodness-of-fit
to the experimental or computer data [10].

8.2 Optimization of Input Parameters

Figure 12 illustrates a 2D response surface obtained
from equation (2). The mean acceleration response
obtained from the data collected at output sensor #2 is
shown as a star. A straightforward optimization provides
the optimal values of the input parameters. In this case, a
pre-load equal to 200 psi (1.38 x 106 N/m2) is obtained
together with an impact angle equal to 0.7 degrees. Note
that such an approach provides an optimized model
capable of reproducing the mean response obtained from
test data. It does not guarantee that the variance or other
higher statistical moments are captured. Other
optimization strategies are discussed in Reference [1] to
address this important issue. In particular, it is shown that
the optimized model can reproduce the variability
measured during the experiments. This demonstrates
that the adequate sources of variability and correct
statistical distributions of input parameters have been
included in our model.
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Figure 12. Optimization of the meta-model.

Obviously, the value of 200 psi for the bolt pre-load could
not be verified and it was likely to have varied somewhat
from test to test. The values of (0.0; 0.7) degrees for the
impact angles were confirmed by an independent
investigation. The measured acceleration signals were
integrated numerically to provide the time-history of
displacement at three locations on top of the steel
cylinder. Then, fitting a plane to these data did confirm
that the rotation was located around the second axis with
an approximate value of 0.7 degrees.

8.3 Independent Validation of the Model

The most critical issue in model validation is to assess
the domain of predictability of the optimized model. Too
often, a model will not be predictive away from the
dynamic range spanned by the test data used for
numerical optimization or model updating. It may be
because the physics of the system is not understood; the
model form is incorrect; or the simulation does not
capture the total variability. However, this issue is critical
because the purpose of numerical models is to make
predictions in situations for which test data are not
available, for example, for predicting rare or catastrophic
events. Practices generally encountered in model
validation are to:

1) Perform independent optimizations using, for
example, various features and metrics, and
assess the consistency between the models
obtained;

2) Validate the predictive quality of the numerical
model using test data sets not used during the
optimization.

With the impact experiment, two independent features
(peak acceleration and time of arrival) are optimized for
each sensor. It has been verified that consistent models
are obtained when the correlation between test data and
model predictions is optimized based on independent
features. Obtaining consistent models is nevertheless not
sufficient because the optimized models could all be
wrong. Data sets from our test matrix (Table 1) are used
for validating the model’s predictions in configurations
other than the one used during statistical effect analysis

and model updating. Preliminary results on the thick
pad/low impact velocity configuration tend to confirm the
conclusion presented in Reference [3]. That is, computer
simulations with the previously optimized input
parameters reproduce the test data of a different setup
with very good accuracy.

9. SOFTWARE INTEGRATION

In this section, we emphasize some of the key points
contributed to by Amanda Wilson during the summer of
2000 in terms of software development and integration.
The computing environment and the interaction between
various software is briefly described.

As mentioned previously, the modeling and analysis
package used for this research is Abaqus™. Generating
and processing efficiently the large amount of data from a
DoE requires that multiple analyses be executed with
minimum involvement from the analyst. To fulfill this goal,
drivers are written with the language Python® [11]. The
Python® scripts parameterize Abaqus™ input decks and
run multiple analyses without having to type in the
commands one by one. Generating the Python® scripts
themselves is performed via a user interface in
MATLAB™. Essentially, all pre and post-processing are
handled within MATLAB™ as much as possible.

An illustration is provided below. The hyper-elastic
constitutive model of an Abaqus™ input deck can, for
example, be defined through the following commands:

 (1) *HYPERELASTIC, POLYNOMIAL, N=1
 (2) 0.6, 1.7, 0.8, 20.0

where the key word “*HYPERELASTIC” refers to a
particular model form and the coefficients provided on the
second line define the material. A parameterization of the
first two variables can be achieved with:

 (1) *PARAMETER
 (2) var1 = 0.6
 (3) var2 = 1.7
 (4) *HYPERELASTIC, POLYNOMIAL, N=1
 (5) <var1>, <var2>, 0.8, 20.0

Each Abaqus™ input deck of the DoE would typically be
assigned different values for variables 1 and 2 and the
role of the Python® script file is to set up the multiple input
decks according to the analyst’s instructions. For
example, defining two analyses at the design points (0.6;
1.7) and (0.8; 2.3) can be handled by the following
Python® script file:

 (1) DoE = parStudy(par=['var1','var2'])
 (2) DoE.define(DISCRETE, par='var1',
 (3) domain=(0.6,0.8))
 (4) DoE.define(DISCRETE, par='var2',
 (5) domain=(1.7,2.3))
 (6) DoE.sample(INTERVAL, par='var1',
 (7) interval=1)
 (8) DoE.sample(INTERVAL, par='var2',
 (9) interval=1)
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 (10) DoE.combine(TUPLE)
 (11) DoE.generate(template='abaqus.inp')
 (12) exit()

where file “abaqus.inp” is a generic Abaqus™ input
deck that contains the problem definition. The generic
input deck must be parameterized with variables 1 and 2
identified by “<var1>” and “<var2>”, respectively, as
shown before. A 2-level factorial analysis is obtained by
changing the key word “TUPLE” on line 10 into “MESH“.
Then, a total of four models are analyzed at the design
points (0.6; 1.7), (0.6; 2.3), (0.8; 1.7) and (0.8; 2.3) for
variables 1 and 2. Parameters can also be defined as
strings of alpha-numeric characters which is convenient
for varying element types, contact conditions, solver
algorithms, etc.

After the parametric Abaqus™ input decks and DoE’s
design points have been defined, the Python® script is
linked to Abaqus™ and executed on one of the available
computing platforms. The multiple binary result files are
gathered by another MATLAB™ function with very little
involvement from the analyst. According to the output
requested by the user, the MATLAB™ function imports,
compiles and executes the adequate Abaqus™ utilities
used to convert and extract the results. The MATLAB™

environment then makes it easy to extract features from
time series, implement the statistical effect analysis and
optimize meta-models. Fitting statistical models to the
DoE’s output is currently performed with the Design-
Expert® software [9] and it has not yet been interfaced
with our MATLAB™ library of functions.

10. CONCLUSION

An overall presentation is given of the on-going research
pursued at Los Alamos National Laboratory for the
validation of numerical simulations for engineering
structural dynamics. An impact experiment used to
develop the model validation methodology is presented.
Design of experiments techniques are implemented to
perform parametric studies using the numerical model
and improve its predictive quality. An application of this
methodology to a more complex engineering simulation is
discussed in a companion paper [6] presented at the
IMAC-XIX conference.

Future work includes the development of a complete
array of features or test-analysis correlation metrics; the
comparison of different sampling techniques; and the

implementation of statistical model updating procedures
capable of refining estimates of the input parameter’s
variance and higher-order statistical moments.
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